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R.A. Scheetz1, T.S. Tveter12, F. Videbæk1, R. Wada8, Z. Yin9, and I.S. Zgura10

1 Brookhaven National Laboratory, Upton, New York 11973, USA
2 Institut de Recherches Subatomiques and Université Louis Pasteur, Strasbourg, France
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Abstract. We present transverse momentum spectra of unidentified charged hadrons at two pseudo-
rapidities (η = 0, 2.2) as well as the first results on identified negatively charged pions at rapidity 2.2
from Au+Au collisions at

√
sNN = 200 GeV. The high pT yields of charged hadrons in the most central

collisions show a strong suppression when compared to expected binary-scaled yields from nucleon-nucleon
collisions or semi-peripheral collisions. The π− spectra at forward rapidity (y = 2.2) also indicate a clear
suppression of high pT π− yields in central collisions.

PACS. 25.75.Dw Particle and resonance production

1 Introduction

High transverse momentum (pT > 2 GeV/c) hadrons pro-
vide a probe of the high energy density matter created
in relativistic heavy ion collisions [1,2]. They are believed
to arise from the fragmentation of partons scattered with
large momentum transfer, Q2, in the initial parton-parton
interactions. In the absence of medium effects, these hard
scattering yields in nucleus-nucleus collisions should scale
with the average number of inelastic nucleon-nucleon col-
lisions Nbin (binary scaling). One of the most intriguing
observations from all four experiments at the BNL Rela-
tivistic Heavy Ion Collider (RHIC) is the large suppression
of high pT hadron yields in central Au+Au collisions [3,
4,5] with respect to the binary-scaled yields from elemen-
tary N +N collisions. This is widely seen as experimental
confirmation of jet quenching, the process in which high

energy partons lose energy when they travel through the
hot medium created in a heavy ion collision [1,2,6,7,8,9].
It has also been observed that at mid-rapidity the yield
of neutral pions is more strongly suppressed than that for
unidentified charged hadrons [3] in central Au+Au colli-
sions. The (anti-) proton yields in central collisions are
comparable to those of pions at intermediate pT (≈ 2 − 4
GeV/c), differing from the expectation of pQCD. These
observations suggest that a detailed study of particle com-
position at intermediate and high pT is very important to
understand hadron production and collision dynamics at
RHIC.

The BRAHMS spectrometers have the unique ability
to identify hadrons over a broad range of rapidity and
transverse momentum. This allows us to study the produc-
tion of identified high pT hadrons at different rapidities. In
this paper, we present measurements of high pT yields of
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charged hadrons at η = 0 and η = 2.2 and of identified π−
at y = 2.2 from Au+Au collisions at

√
sNN = 200 GeV.

2 Experimental setup and data analysis

BRAHMS consists of two magnetic spectrometers (the
Mid-Rapidity Spectrometer, MRS, and the Forward Spec-
trometer, FS) that for the present measurements were po-
sitioned at 90◦ (MRS) and 12◦ (FS) relative to the beam
direction. In addition, a set of global detectors were used
for event characterization. The experimental setup and
operation is described in detail in [10]. Centrality selec-
tion for the Au+Au collisions was done using multiplic-
ity detectors positioned around the nominal intersection
point. Charged hadron tracks are reconstructed using in-
formation from tracking detectors (TPCs and DCs). The
straight line tracks, found in the tracking detectors, are
matched in the intervening magnet and the particle mo-
menta are determined using an effective edge approxima-
tion. Identification of π− particles at forward rapidity is
done by using a time-of-flight wall and a ring imaging
Cherenkov detector. All spectra are from measurements
at various magnetic fields and have been corrected for
the acceptance of the spectrometers and for tracking effi-
ciency. No corrections for feed-down, decay or absorption
have been applied for unidentified charged hadron spectra,
while for π− measurements at forward rapidity corrections
are applied for decay effects and particle identification ef-
ficiencies.

3 Results

Figure 1 shows the centrality dependence of invariant pT

spectra for charged hadrons (h++h−) at pseudo-rapidities
η = 0 (left panel) and for negatively charged hadrons (h−)
at η = 2.2 (right panel), respectively. Also shown in the
figure is a constructed reference spectrum from the UA1
measurements for p + p̄ collisions at CERN [11], suitably
corrected for the respective η coverage.

To quantify nuclear medium effect on the measured
hadron yield in nucleus-nucleus collisions, one compares
it to the expectations from N + N collisions, which must
be appropriately scaled to the large systems. As hard scat-
terings have a very small cross section and are expected
to be incoherent, it is traditional to introduce the nuclear
modification factor:

RAA(pT ) =
d2NAA/dpT dη

(Nbin/σNN
inel)d2σNN/dpT dη

(1)

In the absence of nuclear modifications to hard scattering,
the ratio RAA will be unity; thus departure from unity in-
dicates nuclear medium effects. In fact, for p+A collisions
it has been shown that RAA is larger than one [4,12,13,
14,15]. A qualitatively similar enhancement compared to
p + p collisions was found in central Pb + Pb collisions
at

√
sNN = 17.3 GeV [16,17]. This is commonly referred
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Fig. 1. Invariant pT spectra of charged hadrons for different
centralities from Au+Au collisions at

√
sNN = 200 GeV at

pseudo-rapidities η = 0 (left panel) and η = 2.2 (right panel)
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Fig. 2. Nuclear modification factor RAA as a function of pT

for Au + Au collisions at η = 0 and η = 2.2 for the 0-10% most
central (top row) and semi-periperal (40-60%, middle row) col-
lisions. Bottom row : RCP at the two rapidities. The dotted and
dashed lines show the expected value of RAA using a scaling by
the number of participants and by the number of binary col-
lisions, respectively. Error bars are statistical. The blue bands
indicate the estimate systematic errors. The band at pT = 0
GeV/c is the uncertainty on the scale

to as the Cronin effect [18], attributed to multiple parton
scattering in the initial stage of the collision.

Figure 2 (upper two rows) shows the ratios RAA as a
function of pT for two different centralities at η = 0 and
η = 2.2. At low pT RAA is smaller than one since the bulk
of particle production scales with the number of partici-
pants. Above pT ≈ 2 GeV/c the data from semi-peripheral
collisions agree with the binary-scaling prediction, while
the ratios RAA decrease and are systematically lower than
unity for central collisions at both pseudo-rapidities. In
order to remove the model dependent systematic error in-
troduced by the constructed reference spectra, the bottom
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Fig. 3. Invariant pT spectra of π− for different centralities at
rapidity y = 2.2 in Au + Au collisions at

√
sNN = 200 GeV

panels show the ratios of the RAA for the most central col-
lisions relative to the least central ones at the two pseudo-
rapidities. This ratio is denoted RCP . The nuclear medium
effects are expected to be much stronger in central relative
to peripheral collisions, which makes RCP another mea-
sure of these effects. Indeed, RCP shows a clear decrease
at pT above 2 GeV/c for both η = 0 and η = 2.2. It is
intriguing that, within experimental uncertainties, the de-
gree of high pT suppression (for pT > 2 GeV/c) observed
at η = 2.2 is similar to or larger than that at η = 0.

Since at forward rapidity we see a similar degree of
high pT charged hadron suppression, it is important to
investigate if the suppression at forward rapidity has the
same species dependence as that at mid-rapidity. Figure 3
shows the invariant pT spectra of π− for different cen-
tralities at rapidity y = 2.2 in Au + Au collisions at√

sNN = 200 GeV. Figure 4 shows the central (0-10%)
to semi-peripheral (40-60%) ratio for Nbin scaled pT spec-
tra, RCP , as a function of pT for π− at forward rapidity
(y = 2.2). The dashed and dotted lines indicate the expec-
tations of a scaling by the number of binary collisions and
by the number of participants, respectively. The grey band
at pT = 0 GeV/c is the uncertainty on the scale. The error
bars are statistical only. This figure shows clearly that high
pT π− yields at forward rapidity are strongly suppressed
for central Au+Au collision. Comparing to the bottom
right panel of Fig. 2, the degree of suppression of π− is
quite similar to or even stronger than that of negatively
charged hadrons. A stronger suppression of π− may imply
that at high pT (anti-)proton yields are less suppressed at
rapidity y = 2.2.

4 Conclusion and outlook

The BRAHMS measurements demonstrate a significant
suppression of the high pT spectra for hadrons at both
mid-rapidity and forward rapidity for central Au + Au
collisions at

√
sNN = 200 GeV. The persistence of the sup-
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Fig. 4. RCP as a function of pT for π− at rapidity y = 2.2 in
Au + Au collisions at

√
sNN = 200 GeV

pression up to η = 2.2 suggests that the nuclear medium
which causes the suppression is extended also in the lon-
gitudinal direction. At rapidity y = 2.2 identified π− par-
ticles seem to show stronger suppression than that of neg-
atively charged hadrons. This may imply that (anti-) pro-
tons are less suppressed or even enhanced in forward ra-
pidity for central Au + Au collisions. Further detailed
measurements of high pT particle composition as a func-
tion of rapidity will provide important information on the
hadron production mechanism at RHIC.
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